ABB DO810 3BSE008510R1 双动作切换
电动汽车中的空调系统必须完成多重任务,即确保乘客的热舒适性和调节电池。本文提出了四种基于模型的空调系统控制方法。比较了这两种方法跟踪期望参考值、抑制干扰和避免饱和效应的能力。
两种方法是反馈控制器、分散比例积分控制策略和集中线性二次积分控制策略。另外两种方法在两自由度控制结构中将反馈控制器与基于逆的前馈控制器相结合。此外,这四个概念由汉努斯条件抗饱和机制补充。
所提出的四个控制器中的三个明确地考虑了多输入多输出系统的耦合,这允许高性能的控制。此外,所有方法都具有基于受控系统的物理模型的优点。该物理模型的开发和识别是论文的一部分。
控制器的物理基础确保了高水平的可重用性,从而确保了高效的控制器设计过程。提出的控制概念通过测试平台的测量数据进行验证和比较。
ABB DO810 3BSE008510R1 双动作切换
The air conditioning system in an electric vehicle must perform multiple tasks, namely ensuring thermal comfort for passengers and regulating the battery. This paper presents four model-based control methods for air conditioning systems. The ability of tracking expected reference value, suppressing interference and avoiding saturation effect of these two methods is compared.
The two methods are feedback controller, decentralized proportional integral control strategy and centralized linear quadratic integral control strategy. The other two methods combine a feedback controller with an inverse-based feedforward controller in a two-degree-of-freedom control structure. In addition, these four concepts are complemented by the Hannus conditional anti-saturation mechanism.
Three of the four proposed controllers explicitly consider the coupling of multi-input multi-output systems, which allows for high-performance control. In addition, all methods have the advantage of a physical model based on a controlled system. The development and identification of this physical model is part of the thesis.
The physical foundation of the controller ensures a high level of reusability, thus ensuring an efficient controller design process. The proposed control concept is verified and compared by the measurement data of the test platform.